Five–Dimensional φ–Symmetric Spaces

نویسندگان

  • Eduardo Garcia-Rio
  • Lieven Vanhecke
چکیده

It is still an open problem whether Riemannian manifolds all of whose local geodesic symmetries are volume–preserving (i.e., D’Atri spaces) or more generally, ball–homogeneous spaces, and C-spaces are locally homogeneous or not. We provide some partial positive answers by proving that five–dimensional locally φ–symmetric spaces can be characterized as Sasakian spaces which are ball–homogeneous with η-parallel Ricci tensor or D’Atri spaces or C–spaces. We also prove that all K–contact metric manifolds, and hence all Sasakian manifolds, which are harmonic have constant curvature one. Mathematics Subject Classification: 53B20, 53C25, 53C30.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Commutative curvature operators over four-dimensional generalized symmetric spaces

Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.

متن کامل

On 5-dimensional 2-step homogeneous randers nilmanifolds of Douglas type

‎In this paper we first obtain the non-Riemannian Randers metrics of Douglas type on two-step homogeneous nilmanifolds of dimension five‎. ‎Then we explicitly give the flag curvature formulae and the $S$-curvature formulae for the Randers metrics of Douglas type on these spaces‎. ‎Moreover‎, ‎we prove that the only simply connected five-dimensional two-step homogeneous Randers nilmanifolds of D...

متن کامل

Five - dimensional 4 φ field theory at finite temperature in the symmetric and broken phases

We examine the behavior of 4 φ theory in five dimensions. We provide the effective potential for the symmetric and broken symmetry phase. Our results suggests that due to the presence of an infinite flat extra dimension, the transition from the broken phase to the symmetric case can be delayed with respect to the four dimensional case. We also find that the phase transition at one-loop cannot b...

متن کامل

Classification of Contractively Complemented Hilbertian Operator Spaces

We construct some separable infinite dimensional homogeneous Hilbertian operator spaces H ∞ and H m,L ∞ , which generalize the row and column spaces R and C (the case m = 0). We show that separable infinitedimensional Hilbertian JC∗-triples are completely isometric to an element of the set of (infinite) intersections of these spaces . This set includes the operator spaces R, C, R ∩ C, and the s...

متن کامل

Hyperpolar Homogeneous Foliations on Symmetric Spaces of Noncompact Type

Abstract. A foliation F on a Riemannian manifold M is hyperpolar if it admits a flat section, that is, a connected closed flat submanifold of M that intersects each leaf of F orthogonally. In this article we classify the hyperpolar homogeneous foliations on every Riemannian symmetric space M of noncompact type. These foliations are constructed as follows. Let Φ be an orthogonal subset of a set ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007